to, a binding species such as a peptide synthesized on a polystyrene bead, a binding species specifically biologically coupled to an antibody which is bound to a protein such as protein A, which is covalently attached to a bead, a binding species that forms a part (via genetic engineering) of a molecule such as GST or Phage, which in turn is specifically biologically bound to a binding partner covalently fastened to a surface (e.g., glutathione in the case of GST), etc. As another example, a moiety covalently linked to a thiol is adapted to be fastened to a gold surface since thiols bind gold covalently. Similarly, a species carrying a metal binding tag is adapted to be fastened to a surface that carries a molecule covalently attached to the surface (such as thiol/ gold binding) which molecule also presents a chelate coordinating a metal. A species also is adapted to be fastened to a surface if a surface carries a particular nucleotide sequence, and the species includes a complementary nucleotide sequence. [0026] "Covalently fastened" means fastened via nothing other than one or more covalent bonds. E.g. a species that is covalently coupled, via EDC/NHS chemistry, to a carboxylate-presenting alkyl thiol which is in turn fastened to a gold surface, is covalently fastened to that surface. [0027] "Specifically fastened" or "adapted to be specifically fastened" means a species is chemically or biochemically linked to a surface as described above with respect to the definition of "fastened to or adapted to be fastened", but excluding all non-specific binding. [0028] "Non-specific binding", as used herein, is given its ordinary meaning in the field of biochemistry. [0029] "Colloids", as used herein, means nanoparticles, i.e. very small, self-suspendable or fluid-suspendable particles including those made of material that is, e.g., inorganic or organic, polymeric, ceramic, semiconductor, metallic (e.g. gold), non-metallic, crystalline, amorphous, or a combination. Typically, colloid particles used in accordance with the invention are of less than 250 nm cross section in any dimension, more typically less than 100 nm cross section in any dimension, and in most cases are of about 2-30 nm cross section. One class of colloids suitable for use in the invention is 10-30 nm in cross section, and another about 2-10 nm in cross section. As used herein this term includes the definition commonly used in the field of biochemistry. [0030] A "moiety that can coordinate a metal", a used herein, means any molecule that can occupy at least two coordination sites on a metal atom, such as a metal binding tag or a chelate. [0031] As used herein, a component that is "immobilized relative to" another component either is fastened to the other component or is indirectly fastened to the other component, e.g., by being fastened to a third component to which the other component also is fastened, or otherwise is translationally associated with the other component. For example, a signaling entity is immobilized with respect to a binding species if the signaling entity is fastened to the binding species, is fastened to a colloid particle to which the binding species is fastened, is fastened to a dendrimer or polymer to which the binding species is fastened, etc. [0032] "Diverse biological species" means different animals, such as mouse and hamster, mouse and goat, etc. [0033] The term "sample" refers to any cell, tissue, or fluid from a biological source (a "biological sample", or any other medium, biological or non-biological, that can advantageously be evaluated in accordance with the invention including, but not limited to, a biological sample drawn from a human patient, a sample drawn from an animal, a sample drawn from food designed for human consumption, a sample including food designed for animal consumption such as livestock feed, milk, an organ donation sample, a sample of blood destined for a blood supply, a sample from a water supply, or the like. One example of a sample is a sample drawn from a human or animal to whom a candidate drug has been given to determine the efficacy of the drug. [0034] A "sample suspected of containing" a particular component means a sample with respect to which the content of the component is unknown. For example, a fluid sample from a human suspected of having a disease, such as a neurodegenerative disease or a non-neurodegenerative disease, but not known to have the disease, defines a sample suspected of containing neurodegenerative disease aggregate-forming species. "Sample" in this context includes naturally-occurring samples, such as physiological samples from humans or other animals, samples from food, livestock feed, etc., as well as "structurally predetermined samples", which are defined herein to mean samples, the chemical or biological sequence or structure of which is a predetermined structure used in an assay designed to test whether the structure is associated with a particular process such as a neurodegenerative disease. For example, a "structurally predetermined sample" includes a peptide sequence, random peptide sequence in a phage display library, and the like. Typical samples taken from humans or other animals include cells, blood, urine, ocular fluid, saliva, cerebro-spinal fluid, fluid or other samples from tonsils, lymph nodes, needle biopsies, etc. [0035] "Molecular wires" as used herein, means wires that enhance the ability for a fluid encountering a SAM-coated electrode to communicate electrically with the electrode. This includes conductive molecules or, as mentioned above and exemplified more fully below, molecules that can cause defects in the SAM allowing communication with the electrode. A non-limiting list of additional molecular wires includes 2-mercaptopyridine, 2-mercaptobenzothiazole, dithiothreitol, 1, 2-benzenedithiol, 1, 2-benzenedimethanethiol, benzene-ethanethiol, and 2-mercaptoethylether. Conductivity of a monolayer can also be enhanced by the addition of molecules that promote conductivity in the plane of the electrode. Conducting SAMs can be composed of, but are not limited to: 1) poly (ethynylphenyl) chains terminated with a sulfur; 2) an alkyl thiol terminated with a benzene ring; 3) an alkyl thiol terminated with a DNA base; 4) any sulfur terminated species that packs poorly into a monolayer; 5) all of the above plus or minus alkyl thiol spacer molecules terminated with either ethylene glycol units or methyl groups to inhibit non specific adsorption. Thiols are described because of their affinity for gold in ready formation of a SAM. Other molecules can be substituted for thiols as known in the art from U.S. Pat. No. 5,620,820, and other references. Molecular wires typically, because of their bulk or other conformation, creates defects in an otherwise relatively tightly-packed SAM to prevent the SAM from tightly sealing the surface against fluids to which it is exposed. The molecular wire causes disruption of the tightly-packed self-assembled structure, thereby defining